
CRI: A Novel Rating Based Leasing Policy and
Algorithm for Efficient Resource Management in

IaaS Clouds
Vivek Shrivastava#, D. S. Bhilare*

#International Institute of Professional Studies, Devi Ahilya University, Indore, India
*Computer Centre, Devi Ahilya University, Indore, India

Abstract— Cloud Computing is transfiguring

development of information technology industry by providing
scalable services on a pay per use basis. Cloud hosts and
consumers are tied with service level agreement (SLA). SLA
provides description of services provided by the cloud host. A
cloud host can serve to multiple consumers and this is called
cloud computing multi tenant model. Though, cloud shows
infinite capacity, still there must be some policy to maintain
order of execution of users’ tasks. Consumers can be served in
a first come first serve, round robin or on a priority basis. This
paper proposes a new leasing policy named CRI (Consumer
Rating Index) and an algorithm for prioritizing consumers on
the basis of CRI scores. Experimental results show that this
policy and algorithm can be used for efficient functioning at
cloud hosts side.

Keywords— IaaS, Resource management, Rating based
priority, CRI.

I. INTRODUCTION

Cloud computing is provisioning elastic computing
services on demand as a utility. Consumers are billed only
for what they availed by the host. Cloud Computing
provides three different types of services namely (1)
Software as a Service (SaaS), (2) Platform as a Service
(PaaS), and (3) Infrastructure as a Service (IaaS).

Consumers are free from one time heavy monetary
investment in terms of software, platform, and computing
infrastructure. Instead consumers can avail services on lease
basis, and can change to a different cloud host after using
services of one due to (1) more promising features of other
cloud hosts, (2) less satisfaction of services from its current
cloud host. SLA is used as a descriptive document between
both parties: cloud host and consumer.

Resource management is main challenging area in cloud
computing. A resource manager in cloud computing is
responsible for managing the resources available.
Resources may include hardware such as the node, the
CPUs, memory, network bandwidth or software available
on certain nodes [1],
[2]. Resource manager also defines the queues
and handles job start up and shutdown, but does
not determine which jobs to start or stop.
Resource management affects performance,
functionality and cost of a system. Especially in
IaaS clouds, resources must be used in a cost-performance
ratio. Various different types of algorithms are used in

cloud to maximize the usage of resources in a cost effective
manner.

Fig. 1 Cloud computing multi tenant model

Resource scheduling is key aspect of resource
management. The cloud scheduler examines the running
jobs and jobs in ready queue. Different types of scheduling
policies may be available for scheduler. Cloud scheduler
applies proper scheduling policy to schedule resources to
jobs and keeps track of resource usage and free available
resources [1], [3], [4]. Scheduler instructs resource manager
to start or stop the job on specific node, based on
scheduling policy like FCFS, Round Robin, mDelay [5] etc.
. Cloud resource scheduler plays a resource monitor role.
Cloud resource scheduler is also in-charge of reservations
of resources for a particular time.

Scheduling algorithms can be divided into different
categories like: static scheduling and dynamic scheduling
algorithms, centralized hierarchic and distributed
scheduling algorithms, pre-emptive and non pre-emptive
algorithms, immediate and batch mode scheduling
algorithms, and independent and workflow scheduling
algorithms. Classification of scheduling algorithm can also
be done according to objective functions like: Application
centric (Make-span, economic cost algorithms), Resource
centric (resource utilization, economic profit) and on the
basis of providers [6].

Computing infrastructure is provided in terms of virtual
machines (VMs) on a lease basis to the consumers. In batch

Vivek Shrivastava et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4226-4230

www.ijcsit.com 4226

mode scheduling, best effort leases can be used. Consumers
can be categorized according to the CRI score.

Rest of the paper is organized as: Section 2 contains
related work. Section 3 describes proposed leasing policy
CRI for handling different consumers’ task. In section 4,
proposed algorithm, to serve consumers in order of their
CRI score and implement better resource allocation
policies, are given. Experimental results of algorithm and
graph are presented in section 5. Section 6 contains
conclusions and future work.

II. LITERATURE SURVEY

Cloud Computing offers leasing computing capacity on
a pay per use basis based on service level agreement. It
saves time and cost of installing hardware and software at
consumers’ premises. Cloud provides services which are
elastic in nature [7], [8], [9].

Computing infrastructure is provided to consumer in the
form of virtual machines that can be used for different types
of needs. IaaS service model provides tools and
technologies in such a way that an organization’s existing
hardware can be used to provide hardware services to other
organizations or same organization. So an organization can
use its own private cloud for its services or can become a
public cloud host and provide services to others [10].

Service Level Agreement (SLA) is used as a contract
between cloud host and consumer. This SLA may provide
conditions that must be followed during operation like:
quality of services (QoS), time at which services will be
available, soft deadline or hard deadline and many more
other conditions. SLA monitoring and SLA enforcement
tools are also available and trust issues can be solved using
Web Service Level Agreement (WSLA) as proposed in
[11].

Resource management is required to keep SLA. Mehta et
al. proposed automated resource management. Automated
resource management enables cloud hosts to adopt quickly
changes in service demands of consumers [12], [13].
Resource allocation and de-allocation requires some policy
so that consumers must not suffer unavailability of
resources for a long period of time.

Resource management and scheduling provided by
OpenNebula are benefiting to most cloud users that are
using it. OpenNebula is a well known toolkit for setting up
an IaaS cloud. Currently, OpenNebula scheduler provides
an implementation of the Rank Scheduling Policy. This
Rank Scheduling Policy aims to prioritize resources that are
more suitable for the VM. Match making scheduler of
OpenNebula as described in [14], works on the match
making algorithm which works on policies provided in
table 1.

TABLE I ,OPEN NEBULA’S MATCH MAKING ALGORITHM POLICIES [14]

Haizea can be used as a custom scheduler for
OpenNebula [15]. New policies can also be implemented in
Haizea [16]. Haizea lease manager provides four types of
leases: Immediate, Best Effort (BE), Advance Reservation
(AR) and Dead Line Sensitive (DLS) [17].

A set of Best Effort (BE) leases can go indefinite
number of postponement due to presence of Advance
Reservation (AR) leases. BE leases can be protected from
starvation by adopting starvation-removal technique
introduced in [18]. Efficient resource utilization and
scheduling can also be done using CBUD Micro,
introduced in [8]. CBUD Micro can be used to measure
performance of machines used at cloud host side and
consumer side.

Scheduling can be done in terms of priority of some
attribute. A high priority determines more important and
low priority leads to less importance. In terms of task
scheduling, it determines the order of task scheduling based
on the parameters undertaken for its computation [19].
Work done in [20], is to maximize profit by executing tasks
with higher profit on minimum cost based machine. The
tasks are prioritized on the basis of task deadline in
ascending order and task profit in descending order. We are
proposing a new leasing policy to prioritize consumers’
lease requests according to a ten-tuple as described in
subsequent sections.

III. CRI LEASING POLICY
In our work, we are proposing CRI leasing policy.

Different consumers’ request for lease can be given priority
according to CRI score. CRI can be characterized by
following set of parameters:

CRI =<H, TO, POW, CB, TOC, LTT, SV, EOW, FR,
NFR > (3.1)

These parameters can be rated from 1-10 scale by cloud
host.
Here H=History of consumer with cloud host. For example a

consumer can be a new consumer or an old
consumer.

TO =TurnOver of consumer, turnover may be helpful in
deciding financial position of consumer.

POW =Purpose Of Work. This work may be of type
scientific (suitable for grids) or commercial (suitable
for clouds).

CB =Current Balance with cloud host, to decide
consumers lease limit with cloud host.

TOC =Type Of Consumer, where a consumer can be an
individual, a private company, a government or
public organization.

LTT =Lease Total Time, so that resources can be reserved
or relinquished for other consumers.

SV =Security Vulnerability, Different groups may be
rival to each other or some consumers may have
wrong intentions with other consumers. If a consumer
has low reputation in terms of security, his overall
CRI may suffer.

EOW =Essentiality Of Work. This EOW may be given by
the consumers by mentioning degree of essentiality
of their work.

FR =Functional Requirements of consumers.
NFR =Non-Functional requirements of consumers.

Policy Description
0 Packing: Minimize the number of hosts in use by packing the

VMs in the hosts to reduce VM fragmentation.
1 Striping: Maximize resources available for the VMs by

spreading the VMs in the hosts.
2 Load-aware: Maximize resources available for the VMs by

using those nodes with fewer loads.
3 Custom: Use a custom RANK.
4 Fixed: Hosts will be ranked according to the PRIORITY

attribute found in the Host or Cluster template.

Vivek Shrivastava et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4226-4230

www.ijcsit.com 4227

CRI score for a consumer can be calculated as: ܫܴܥ = ு∗௪భା்ை∗௪మା	ைௐ∗௪యା∗௪రା்ை∗௪ఱା்்∗௪లାௌ∗௪ళାாைௐ∗௪ఴାிோ∗௪వାேிோ∗௪భబ∑ ௪భబసభ 	 (3.2)

Where w1 to w10 are weights of aforesaid parameters and
these weights can vary across different cloud hosts and may
be proprietary to cloud host.

This leasing policy provides a common basis for
evaluating different consumers. Further this CRI can be
calculated by organization as according to its needs and
application area. According to the CRI leasing policy, we
can infer four important corollaries that will be used in the
algorithm.

Corollary 1. CRI score may be higher or lower of different
consumers. A Consumer having low CRI will be served first.

This can be easily inferred from the specification
of the CRI leasing policy. A cloud host According to CRI
score will provide VMs to different consumers. High CRI
score will lead to delay in provisioning VMs to a consumer,
while a low CRI score will provide a consumer early
response for VMs.

Corollary 2. All leases to be served can be executed in
batch mode. Algorithm is most suitable for scientific type of
computations.

Consumers are sequenced according to CRI score,
so immediate lease requirement or advance reservation
(AR) lease are not suitable for proposed algorithms. A
homogeneous lease requirement is constraint of this leasing
policy. Scientific computations may be batched for such
situations.

Corollary 3. If two or more consumers (say Ai, Ai+1,
Ai+2,…..Ai+n, for 1<=i <= k) have same CRI score, then
consumer Ai will be given VMs prior than Ai+1 if Ai
requires less number of VMs than Ai+1, for 1 <= i <= k-n).

Consumers having same CRI score will be given
VMs one after another according to less number of leases
required by consumer.

Corollary 4. If two or more consumers (say Ai, Ai+1, Ai+2,
.., Ai+n, for 1<=i <= k) have same CRI and number of
VMs required, then consumers will be served in a first come
first serve manner.

Consumers having same CRI score and same number of
VMs requirement will be leased in order of their requests to
cloud host.

IV. PROPOSED ALGORITHMS

Algorithm based on proposed leasing policy CRI is given
in this section. System description and Algorithm are also
described here. Sample lease requests are described in later
and computing environment is described in former
paragraph.

A. System Description

In Haizea, input of leases can be done with the help of
XML based files called lease workload file (lwf), further
applications can enter lease request in XML file and then

this XML files can be given as input to Haizea lease
manager. The following specifies a collection of 12 nodes,
all with one CPU, four with 1024MB of memory and eight
with 2048MB of memory as used in [18]:

<nodes>

<node-set numnodes="4">
<res type="CPU" amount="100"/>
<res type="Memory" amount="1024"/>
</node-set>
<node-set numnodes="8">
<res type="CPU" amount="100"/>
<res type="Memory" amount="2048"/>
</node-set>

</nodes>

Sample lease request in modified lwf is shown below:

<lease-workload name="sample">

<description>
A simple trace where so many

leases with CRI as rating is specified.
</description>

<lease-requests>
<!-- First lease request-->

<lease-request arrival="00:00:00">
<lease preemptible="true">
<nodes>

<node-set numnodes="4">
<res type="CPU"
amount="100"/>
<res type="Memory"
amount="1024"/>
</node-set>

</nodes>
<start></start>
<duration time="10:00:00"/>
<software>

<disk-image id="foobar.img"
size="1024"/>

</software>
<rating rat=”4”/>

</lease>

</lease-request>
<!-- Second lease request -->
<lease-request arrival="01:00:00">

<lease preemptible="true">
<nodes>

<node-set numnodes="4">
<res type="CPU"

amount="100"/>
<res type="Memory"

amount="1024"/>

Vivek Shrivastava et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4226-4230

www.ijcsit.com 4228

</node-set>
</nodes>
<start></start>
<duration time="10:00:00"/>
<software>

<disk-image id="foobar.img"
size="1024"/>

</software>
<rating rat=”2”/>
</lease>

</lease-request>
<!-- Third lease request -->
<lease-request arrival="02:00:00">

<lease preemptible="true">
<nodes>

<node-set numnodes="4">
<res type="CPU"

amount="100"/>
<res type="Memory"

amount="1024"/>
</node-set>
</nodes>
<start></start>
<duration time="10:00:00"/>
<software>

<disk-image id="foobar.img"
size="1024"/>

</software>
<rating rat=”1”/>
</lease>

</lease-request>
<!-- Fourth lease request -->
<lease-request arrival="03:00:00">

<lease preemptible="true">
<nodes>

<node-set numnodes="4">
<res type="CPU"

amount="100"/>
<res type="Memory"

amount="1024"/>
</node-set>

</nodes>
<start></start>
<duration time="10:00:00"/>
<software>

<disk-image id="foobar.img"
size="1024"/>

</software>
<rating rat=”3”/>
</lease>

</lease-request>

Attributes and their sub attributes like lease, lease id,

nodes, start, duration time, and software are already
available with Haizea installation. We have introduced new
attribute rating, which represents CRI score of consumer.
This CRI score will be calculated by cloud host with the
help of equation (3.2), according to its needs, application
area and present situations.

Haizea is implemented in Python language, so we also
have implemented our algorithms in Python and integrate
those modules with Haizea to test and run. Procedure
Enqueue_Lease is used to append a new request to lease
queue. We have modified BE leases according to our need
to implement CRI leases so, we are interested in only BE
lease environment. Procedure Sort_Queue is used to sort all
available leases in using CRI score as primary key and
number of VMs as secondary key. Serve_Leases procedure
is used to do operations of Haizea normally i.e. managing
available lease requests.

B. Algorithm

Procedure Enqueue_Lease()
Begin

if scheduling lease type = BE then:
 insert_in_queue(lease, CRI,

 Number_of_nodes)
call Sort_Queue (lease,

Number_of_nodes)
call Sort_Queue (lease, CRI)

 end if
End of Enqueue_Lease()

Procedure Sort_Queue(lease, CRI)
Begin

Sort all leases according to Timsort Algorithm [21]
call Serve_sorted_leases()

End of Sort_Queue(lease, CRI)

Procedure Serve_Leases()
Begin
 if resources are available then:

Pick leases from sorted queue and allot
VMs demanded.

if VM_shutdown=true then:
 Relinquish VMs for other leases.

 else
 put leases in wait queue
 end if

end if
End of Serve_Leases()

V. EXPERIMENTS AND RESULTS

Table-1 shows consumers’ requests under test run. This
batch of consumers’ requests is generated only for checking
the validity of our proposed leasing policy and algorithm in
lab. Parameters Lid, CRI, NumNodes, C_No are used in
table, where Lid is lease id usually given in ascending order
in order of appearance of leases, CRI score is consumer
rating index score, NumNodes is number of nodes required
by consumer in present lease, and C_No is completion
number of that lease.

Graph in figure-2 shows comparison between existing
algorithm and proposed algorithm implemented by us in
Haizea.

Vivek Shrivastava et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4226-4230

www.ijcsit.com 4229

 TABLE II.
 RESULTS SHOWING COMPLETION OF LEASES ACCORDING TO CRI

SCORE AS PRIMARY KEY AND NUM_NODES AS SECONDARY KEY.

VI. CONCLUSION AND FUTURE WORK

CRI leasing policy and its implementation can be very
beneficial to both cloud hosts and consumers. This leasing
policy is flexible and provides choice of weight to cloud
host. A large number of requests of leases by different
consumers can be easily served by using our leasing policy.
At the time of peak load this leasing policy provides a basis
to accept or reject consumers’ request according to its CRI
score. In case of same CRI, consumers requests are served
according to low-to-high number of VMs required so that a
small task can be finished first. If consumers have same
CRI score and same number of VMs i.e. same primary and
secondary key for sorting then their order of arrival of lease
request’s date and time will be used as third key to sort
such lease requests.

Fig. 2 Graph showing comparisons between existing and proposed

algorithms.

Future work may use prioritizing CRI as primary key
and less number of resources required for small amount of
time as secondary key. This work also suggests a
comparative study of serving consumers’ requests as
primary key and sorting number of nodes in descending
order as secondary key to see the overall effect on cost and
revenue at cloud host side.

REFERENCES
[1] P. Brucker, Scheduling algorithms, 5th ed, Berlin: Springer-

Verlag, 2007.
[2] Ti Leggett. (2012) HPC job management page on wiki. [Online].

Available: http://wiki.ci.uchicago.edu/Resources/JobManagement.
[3] D. Poola, S. K. Garg, R. Buyya, Y. Yang, and R. Kotagiri. “Robust

scheduling of scientific workflows with deadline and budget
constraints in clouds,” In Proc. The 28th IEEE AINA-2014, 2014,
paper p. 1-8.

[4] H. K. Mehta, P. Kanungo, and M. Chandwani. “Performance
enhancement of scheduling algorithms in clusters and grids using
improved dynamic load balancing techniques,” In Proc. The 20th
ACM ICCWWW-2011, 2011, p. 385-390.

[5] H. K. Mehta, M. Chandwani, and P. Kanungo. “A modified delay
strategy for dynamic load balancing in cluster and grid
environment,” In Proc. IEEE ICISA, 2010, paper p. 1-8.

[6] Michael Pinedo, Scheduling: Theory, Algorithms, and Systems, 2nd
Ed., NJ: Prentice-Hall, 2002.

[7] H. K. Mehta, and E. Gupta. “Economy Based Resource Allocation
in IaaS Cloud,” International Journal of Cloud Applications and
Computing vol. 3, (2), pp. 1-11, 2013.

[8] V. Shrivastava, and D. S. Bhilare. “CBUD Micro: A Micro
Benchmark for Performance Measurement and Resource
Management in IaaS Clouds,”
International Journal of Emerging Technolgy and Advanced
Engineering vol. 3(11), pp. 433-437, 2013.

[9] S. Ostermann, I. Alexandria, Y. Nezih, P. Radu, F. Thomas, and E.
Dick. “A performance analysis of EC2 cloud computing services
for scientific computing,” In Proc. ICCC, 2010, paper, p. 115-131.

[10] B. Sotomayor, S.M. Rubén, M. L. Ignacio, and I. Foster. “Virtual
infrastructure management in private and hybrid clouds,” Internet
Computing, IEEE vol. 13(5), pp. 14-22, 2009.

[11] P. Patel, A. Ranabahu, and A. Sheth. “Service level agreement in
cloud computing.” Wright state University, Kno.e.sis Tech. Rep.,
2009.

[12] H. Mehta, P. Kanungo, and M. Chandwani. “Performance
enhancement of scheduling algorithms in web server clusters using
improved dynamic load balancing policies,” in Proc. INDIACom-
2008,p. 651-656 .

[13] Q. Zhang, C. Lu, and B. Raouf. “Cloud computing: state-of-the-art
and research challenges,” Journal of Internet Services and
Applications vol 1(1), pp. 7-18, 2010.

[14] (2014) The OpenNebula Website. [Online]. Available:
http://opennebula.org/.

[15] (2014) The Haizea Website. [Online]. Avaialable:
http://haizea.cs.uchicago.edu/.

[16] B. Sotomayor. (2009) The Haizea Manual on Haizea. [Online].
Available: http://haizea.cs.uchicago.edu/haizea_manual.pdf.

[17] A. Nathani, S. Chaudhary, and G. Somani. “Policy based resource
allocation in IaaS cloud,” Future Generation Computer Systems
Vol. 28(1) pp. 94-103, 2012.

[18] V. Shrivastava, and D. S. Bhilare. “Algorithms to Improve
Resource Utilization and Request Acceptance Rate in IaaS Cloud
Scheduling,” International Journal of Advanced Networking &
Applications vol. 3(5), pp. 1367-1374, 2012.

[19] W. Lin, L. Chen, Z. W. James, and R. Buyya. “Bandwidth‐aware
divisible task scheduling for cloud computing,” Software: Practice
and Experience vol 44(2), pp. 163-174, 2014.

[20] M. Choudhary, and S. K. Peddoju. “A dynamic optimization
algorithm for task scheduling in cloud environment,” International
Journal of Engineering Research and Applications vol. 2(3), pp.
2564-2568, 2012.

[21] T. Peters. (2002), listsort page on svn.python [Online]. Available:
http://svn.python.org/projects/python/trunk/Objects/listsort.txt

0

2

4

6

8

1 2 3 4 5 6 7

Co
ns

um
er

 R
at

in
g

In
de

x
Sc

or
e

Order of Completion

Existing
Algorithm

Proposed
Algorithm

Sr. No. Lid CRI
Score

Num_No
des

C_No

1 1 4 4 5
2 2 3 2 4
3 3 5 2 6
4 4 1 4 1
5 5 2 4 3
6 6 2 2 2
7 7 6 1 7

Vivek Shrivastava et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4226-4230

www.ijcsit.com 4230

